
RL-TR-97-34
Final Technical Report
July 1997

MACHINE LEARNING FOR
MILITARY OPERATIONS

SRI International

Sponsored by
Advanced Research Projects Agency
ARPA Order No. A005

APPROVED FOR PUBLIC RELEASE; DISTR/BUT/ON UNLIMITED.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the U.S. Government.

[XjnC QUALITY INSPECTED Z

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-34 has been reviewed and is approved for publication.

APPROVED:
LOUIS J. HOEBEL
Project Engineer

FOR THE COMMANDER:
JOHN A. GRANIERO, Chief Scientist
Command, Control & Communications

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CA, 525 Brooks Rd, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

MACHINE LEARNING FOR MILITARY OPERATIONS

Contractor: SRI International
Contract Number: F30602-93-C-0071
Effective Date of Contract: 1 April 1993
Contract Expiration Date: 31 May 1996
Program Code Number: 3E20
Short Title of Work: Machine Learning for Military Operations

Period of Work Covered: Apr 93 - May 96

Principal Investigator:
Phone:

RL Project Engineer:
Phone:

Marie E desJardins
(415)859-6323
Louis J. Hoebel
(315)330-3655

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by
Louis J. Hoebel, RL/C3CA, 525 Brooks Rd, Rome, NY.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for tbis collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Devis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank/ 2. REPORT DATE

 July 1997

3. REPORT TYPE AND DATES COVERED

 Final Apr 93 - May 96
4. TITLE AND SUBTITLE

MACHINE LEARNING FOR MILITARY OPERATIONS

6. AUTHOR(S)

Marie E. desJardins

5. FUNDING NUMBERS

C - F30602-93-C-0071
PE - 602301E, 603728F
PR - A005
TA-00
WU-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI
333 Ravens wood Ave.
Menlo Park CA 94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Advanced Research Projects Agency Rome Laboratory/C3CA
3701 North Fairfax Drive 525 Brooks Rd
Arlington, VA 22203-1714 Rome, NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-34

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Louis J. HoebeI/C3CA/315-330-3655

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words!

This report covers the application of Machine Learning Techniques to building planning operators. Specifically,
developing intelligent tools for acquiring, refining, and validating knowledge bases for operations planning systems.

14. SUBJECT TERMS

Second generation digital optoelectronic computer (DOCH), text search primitives,
relational database algorithms, knowledge base

15. NUMBER OF PAGES

48
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSDJTED

20. LIMITATION OF ABSTFJACT

UNL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

CONTENTS

INTRODUCTION 1

1 SUMMARY OF ACCOMPLISHMENTS 2

2 MOTIVATION 3

3 KATY 3
3.1 OPERATOR EDITOR 4
3.2 OPERATOR LEARNER 8
3.3 PAGODA 15
3.4 PREDICATE EDITOR 16
3.5 GKB EDITOR 16

4 SIMULATORS 16
4.1 OIL-SPILL DOMAIN 16
4.2 MILITARY DEPLOYMENT DOMAIN 18

5 EVALUATION METRICS 20

6 RELATED WORK 20

7 PUBLICATIONS 22

8 CONCLUSIONS AND FUTURE WORK 22

9 REFERENCES 25

FIGURES

1 Operator Editor Graphical Display 5
2 ML-Get-Boom1 Operator 7
3 Dialog Box 8
4 Operator Learner Architecture 10

jmC QUAMTY INSPECTED €

INTRODUCTION

SRI International (SRI) is pleased to present this final report under Contract
F30602-93-C-0071, Machine Learning for Military Operations Planning, to Rome Laboratory
(RL) of the United States Air Force (US AF) and the Defense Advanced Research Projects Agency
(DARPA). The work described is part of the DARPA/RL Planning Initiative (ARPI): specifically,
the progress made during this contract to develop intelligent tools for acquiring, refining, and
validating knowledge bases for a military operations planning system.

As with most large-scale AI projects, one of the most significant obstacles to developing
intelligent decision support systems is knowledge engineering. Large quantities of domain
knowledge are required for the effective reasoning about large-scale, real-world problems.
Therefore, tools for knowledge acquisition must be developed before fully operational crisis
response planning systems can be built. We emphasize the use of the term knowledge acquisition,
rather than knowledge engineering, to distinguish our goal, building tools that take an active role
in acquiring knowledge, from the more traditional approach of an AI expert, creating a knowledge
representation and encoding the knowledge base by hand.

It is our view that knowledge acquisition tools should (1) enable human planners to transfer
their expertise to the system, (2) support the acquisition of knowledge from on-line sources, and
(3) integrate information from the range of available sources, including human experts, simulators,
on-line databases, training exercises, and actual crises. To meet these needs, SRI has developed the
Knowledge Acquisition Toolkit (KATY), a package of knowledge acquisition tools for the System
for Interactive Planning and Execution (SlPE-2), SRI's generative planning system. KATY includes
three knowledge editing tools (the Operator Editor, Object Editor, and Predicate Editor) and two
machine learning tools (the Operator Learner and the Probabilistic Autonomous GOal-Directed
Agent [PAGODA], an inductive learning system).

The graphical Operator Editor allows users to develop new planning operators and revise
existing operators. This tool also supports editing of the object hierarchy via an interface from
SlPE-2 to SRI's Generic Knowledge Base (GKB) Editor. The Predicate Editor allows user to view,
add, and modify the predicates that define the world state.

The Operator Learner uses the PAGODA learning model [desJardins 1992] to acquire planning
operators via feedback from simulators and from the user's planning processes. The user first
enters partially specified operators that reflect an initial rough description of how a subgoal may
be solved. The Operator Learner then "fills in the blanks," identifying appropriate preconditions
and temporal constraints on the application of the operator. Thus, the user contributes expertise,
while the automated learning tool performs much of the tedious work of developing preconditions
and identifying precisely when it is appropriate to apply a particular operator.

PAGODA, which was originally developed as part of Dr. Marie desJardins's dissertation
research [desJardins 1992], has been enhanced under this contract. Specifically, SRI made a
number of extensions and improvements to PAGODA to support the inductive learning required for
the Operator Learner, and developed a generic interface for describing input features and training
examples.

*The GKB Editor was developed by SRI under Contract F30602-94-C-0263 to Rome Laboratory, Generic
Knowledge Base Browser and Editor.

This report describes the progress made on the development of KATY during the 3-year
contract. Section 1 summarizes our accomplishments. Section 2 defines the problems we
addressed and the rationale for our solutions. KATY and its components are described in Section 3.
Section 4 describes the various simulators that we reviewed in developing the current
demonstration scenario. Evaluation metrics are discussed in Section 5. Related work is surveyed
in Section 6. Section 7 contains a list of publications written under this contract. In Section 8 we
present our conclusions and describe future work. In Section 9 we list referenced documents.

1 SUMMARY OF ACCOMPLISHMENTS

Our accomplishments during this contract are listed below and are described in detail in the
cited sections.

• We ported PAGODA, an inductive machine learning system [desJardins 1992], from
ZetaLisp/Flavors* into Lucid Common Lisp/Common Lisp Object System (CLOS).
The system now runs on any standard Common Lisp and/or CLOS platform. We also
rewrote substantial parts of the system to increase its efficiency and generality
(Subsection 3.2.5).

• We implemented an Operator Editor (Subsection 3.1) based on SRI's Act Editor
[Wilkins et al. 1994]. Many of our extensions of the Operator Editor have been
incorporated into the Act Editor.

• We implemented an Operator Learner that uses qualitative constraints on a partial
operator to create a series of experiments, use those experiments to generate plans,
evaluate the plans, extract training instances, and apply inductive methods to the
instances in order to learn preconditions for operator application (Subsection 3.2).
We extended this system to support learning from the user's choices, by creating
training examples for each operator choice the user makes during planning
(Subsection 3.2.5).

• We developed and implemented an abstraction language for qualitative constraints
that allows the user to specify what information is relevant to the success of the
operator, without actually writing specific preconditions (Subsection 3.2.1).

• We developed a generic input language for PAGODA (Subsection 3.2.5). This
language enables PAGODA to accept training examples in a range of formats, and can
also serve as a generic interface from the Operator Learner to other inductive
learning systems.

• We created demonstration scenarios for the military and oil-spill application
domains, and explored a number of simulators and evaluation tools in the military
domain (Section 4).

• We ported SOCAPt and KATY to Allegro Common Lisp and CLIM 2.0.

*A11 project and company names mentioned in this document are the trademarks of their respective holders.
tSocAP: System for Operations Crisis Action Planning [Bienkowski 1995].

We created a World Wide Web home page for the project
(ht^://www.erg.srixonVpeople/marie/papers/ml-surnmary.html).
We presented project-related talks at the 1994 IEEE Conference on Tools with AI
[desJardins 1994b], the 1994 Fall Symposium on Planning and Learning [desJardins
1994c], the 1994 Fall Symposium on Relevance [desJardins 1994d], the 1995 AAAI
Fall Symposium on Active Learning, Stanford University, Carnegie Mellon
University, the University of Massachusetts, Rome Laboratory, and several ARPI
workshops.

2 MOTIVATION

One of the most time-consuming and critical tasks in the development of crisis response
planning systems is knowledge engineering. For example, a significant part of the development
effort for SOCAP [Bienkowski 1995], a prototype military operations planning system based on the
AI generative planning system, SlPE-2, consisted of writing and debugging planning operators.
This process required an AI expert; it would have been difficult to teach an AI-naive domain expert
how to write and debug planning operators, using the few tools that SlPE-2 provided [Desimone et
al. 1993].

Our experience suggested, however, that given the appropriate tools, human planners who
were not AI experts could construct knowledge bases for AI planning systems. These tools should
guide the user through the operator development and debugging process, and should embody the
expertise about the planning representation that currently must be provided by an AI knowledge
engineer. These tools should also support both the construction of the initial knowledge base and
the updating of the knowledge over the life of the planning system. Continuous updating of the
knowledge base is essential to ensure that the planning system is not constrained by a pre-existing
knowledge base and can be used for unforeseen types of operations and situations. The tools will
be used for knowledge acquisition and also will enable the system to learn—that is, to improve its
performance over time.

3 KATY

Each operator in SlPE-2 specifies a method for achieving a single mission or task, including
the actions required, preconditions for using the specified method, temporal constraints among the
actions, and expected effects of the actions. Previously, these operators had to be developed
manually by AI planning experts who edited ASCII descriptions of the operators. This process was
tedious, prone to errors, and difficult for users who were not AI experts.

KATY is a package of knowledge acquisition tools that simplifies this process and reduces the
likelihood of errors. If extended through future development, these tools will eventually allow
AI-naive domain experts to transfer their knowledge directly to SlPE-2.

KATY provides two types of tools: knowledge editors and knowledge refiners. Knowledge
editors provide graphical editing functions for creating and modifying planning knowledge. KATY
includes tools for editing operators (the Operator Editor), class hierarchies (the Object Editor), and
knowledge about the state of the world (the Predicate Editor). Knowledge refiners automatically or
interactively analyze and improve the knowledge base. KATY's Operator Learner is a knowledge
refiner that learns the preconditions for applying planning operators by using evaluation feedback
from a simulator, an automated evaluation tool, or the domain expert's planning choices.

Several critical issues are associated with knowledge acquisition tools in general, and tools
based on automated learning in particular:

1. It is difficult to get domain experts to understand and use new tools.
2. Automated learning methods must rely on possibly inaccurate or incomplete data.
3. Training data may be difficult and expensive to collect, and training instances may

be quite large in complex domains.
Consideration of these issues led us to define three desiderata for KATY:

1. Graphical interfaces and semiautomated verification techniques should be used to
simplify user training.

2. Data from a variety of sources including multiple simulators and evaluation tools, as
well as user behavior, should be incorporated into KATY, to reduce uncertainty in the
acquired knowledge.

3. Partial knowledge and other guidance provided by the user should be used to reduce
the size and number of required training instances.

In the first year of this effort, we implemented the Operator Editor. This graphical editing tool
for planning operators enables users to develop new operators and edit existing ones. An intelligent
interface guides users through the development process, ensuring that the knowledge is in the
correct form. In the second year, we implemented the Operator Learner, an inductive learning
module that tests and refines these partial operators. In the third and final year of the project, we
extended the inductive learning system, improved the experiment generation and selection
techniques of the Operator Learner, and extended the Operator Learner to observe and learn from
expert planning behavior.

3.1 OPERATOR EDITOR
The Operator Editor provides a graphical interface (shown in Figure 1) for creating and

modifying SlPE-2 planning operators. The plot of the operator is displayed as a graph, with nodes
that correspond to actions and subgoals, and edges that indicate temporal relationships among these
nodes. The other information associated with the operator can be displayed as buttons or text fields
(like the preconditions in Figure 1).

The Operator Editor has four significant advantages over the methods previously provided in
SlPE-2 for developing operators: first, the operators are easier to understand because they are
displayed and edited graphically, rather than as ASCII text. Second, all editing is done via
templates, so that the possibility of syntactic errors is avoided. Third, a data dictionary is
maintained to ensure that all classes, variables, and predicates entered are in the correct format.

Operator
(*SUFriCIZNT-PORT-CAPÄCnY SEAPORT. 1 FORCE. 1)
(«SUFrICIENT-PORT-CAPACITY SEAPORT. 1 SSEALIFT. 2)
(•SUFriCHNT-PORT-CAPACITY SEAPORT. 1 SSEALIFT. 2)
(«SUrriCUHT-CARRTmG-CAPACITY SSEALIFT. 2 FORCE. 1)
The folloving is not true:

(«TRAWEL-DIRECT FORCE.1 LOCATION. 1 LOCATION. 2)
Cosmand:
Variables to instantiate:
None
Coamand:
Goal:
FORCE. 1 is located in LOCATION. 2.

wand:

Edit Plot Exit

DEPLOY-VIA-SEAPORT
PURPOSE | | PRECONDITIONS] | SETTING I I RESOURCES I | PROPERTIES [| COMMENT | | EFFECTS | | VARIABLES

Preconditions:
All of the following are true:

("SUFFICIENT-CARRYING-CAPACITY SSEALIFT.1 FORCE.l)
fSUFFICIENT-PORT-CAPACITY SEAPORT.1 FORCE.1)
("SUFFICIENT-PORT-CAPACITY SEAPORT.1 SSEAUFT.2)
fSUFFICIENT-PORT-CAPACITY SEAPORT.1 SSEALIFT?)
CSUFFICIENT- CARRVING-CAPACITV SSEALIFT.2 FORCE.1)
The following is not true:

(TRAVEL-DIRECT FORC6.1 LOCATION.! LOCATION.?)

'MOVED
FORCE.1
SEAPORT.1
ILOCATIOH.2,

Figure 1. Operator Editor Graphical Display

Finally, developing the plot as a graph rather than as a text description of the branches in the plot
is less prone to error, especially since the Operator Editor automatically maintains the parallel,
structure of the graph.

The method we have used to build the Operator Editor can best be described as evolutionary
development. We used the Operator Editor at SRI to develop operators for the military planning
domain and for a United States Coast Guard (USCG) project in which SlPE-2 was applied to
oil-spill response planning [Desimone and Agosta 1993]. We also introduced additional
functionality and updated the user interface, based on feedback from the ongoing usage of the
editor. We plan to use the editor more extensively in a new NRaD -funded project to apply SlPE-2
to maritime crisis action planning. The editor will thus continue to evolve, in response to
requirements generated by its actual users.

*NRaD: Naval Command, Control, and Ocean Surveillance Center (NCCOSQ Research, Development, Test, and
Evaluation Division.

The Operator Editor is based on SRI's Act Editor. The Act Editor uses the Act representation
for procedural knowledge, which subsumes SlPE-2's operator representation. Because the Act
representation used in the editor is different from SlPE-2's internal representation, operators must
be translated back and forth between the two representations. (This translation is done
automatically by the software.) We have tailored the Operator Editor to users who are familiar with
SlPE-2's representation, but do not necessarily understand the details of the Act representation. For
the remainder of this report we will refer to "operators," although in the editor they are internally
represented as Acts.

The Operator Editor can be used during planning and replanning, as well as during knowledge
development. In particular, whenever SlPE-2 fails to solve a problem, the user has the option of
entering the Operator Editor. Any operators that the user adds or modifies during the Operator
Editor session are made available to SlPE-2 when the editor is exited. For example, if SlPE-2 fails
to solve a goal because no operator has a purpose that matches the goal, the user can enter the
Operator Editor, build an operator that represents a subplan for solving that goal, and return to
SlPE-2; the new operator will be used to expand the goal in the plan without any need for
backtracking.

The Operator Editor provides consistency checking and type checking throughout operator
development. The goal is to support the users by giving them as much assistance as possible,
without constraining them to a particular model of operator development.

We developed an abstraction language for expressing qualitative constraints (QCs) (see
Subsection 3.2.1) and used this language to extend the Operator Editor to support the writing of
operators. Thus, users can develop partial operator descriptions that can be fed into the inductive
learning tool. The QCs shown in Figure 2 are examples of abstract preconditions that must be
instantiated by the machine learning system. For example, the second QC states that the sea-state
(roughness of the water) in the sea sector where an operation is being performed
(sea-sector. 1), at the time of the operation (latest. 1), is relevant to the success of the
operation. The asterisk (*) indicates that the sea-state value is unknown (i.e., the range of
acceptable values must be determined by the inductive learning system.) We will return to this
example in Subsection 3.2.

All of the fields in an operator are displayed graphically on the screen. Normally, the plot
nodes and edges are drawn as a graph, and the other fields (purpose, preconditions, etc.) appear as
buttons. Left-clicking on any button, node, or edge causes a description of the contents of that
object to be printed in the interaction window. Middle-clicking on an object copies it into an edit
buffer, which can then be pasted into another operator. Right-clicking edits the object.

We have developed a toolkit of CLIM-based dialog boxes that can be used to build templates
for editing a variety of objects (an example is shown in Figure 3). Each field in a dialog box has an
associated type that defines the set of legal completions, which the user can access as a menu of
choices. If the user enters an object that is not in this set, the system either signals an error or
defines a new object, depending on the context. Each domain's knowledge base has an associated
data dictionary, which is built automatically by the Operator Editor and contains the set of known
predicates (along with their arities and argument types), classes, and objects. This data dictionary
is used to generate the completion sets in the dialog boxes.

*The phrases "left-clicking," "middle-clicking," and "right-clicking" mean clicking the left, middle, and right-hand
mouse buttons.

OPERATOR: ml-get-booml
ARGUMENTS: vessell, boom-levell, numericall, sea-sectorl,

sea-statel, booml, numerical2 is (length-boom-ft booml);
INSTANTIATE: booml;
PURPOSE: (level>= vessell boom-levell numericall);
PRECONDITION: (in-service booml);
Properties:

NONLOCAL-VARS = (sea-state.1 sea-sector.1 latest.1),
QC = ((%property max-sea-state boom.l *)

(sea-state sea-sector.1 latest.1 *)) ;
PLOT:
PARALLEL

BRANCH 1:
GOAL

GOALS: (located booml sea-sectorl);
RESOURCES: booml;

PROCESS
ACTION: deploy-boom;
ARGUMENTS: booml, sea-sectorl, vessell, boom-levell,

numerical2;
RESOURCES: booml;
EFFECTS: (boom-deployed booml vessell),

(produce vessell boom-levell numerical2);
BRANCH 2:

GOAL
GOALS: (level>= vessell boom-levell numericall);
ARGUMENTS: vessell, boom-levell, numericall, sea-sectorl,

sea-statel;
END PARALLEL
END PLOT END OPERATOR

Figure 2. ML-Get-Boom1 Operator

Dialog boxes are used during the execution of menu- and mouse-based editing commands, to
add and delete nodes, edges, and values in the fields of the operator (e.g., preconditions and
resources). Additionally, the user can reposition nodes in the graphical display and can toggle the
appearance of operator fields (which can be viewed as buttons or as text boxes in the graphical
display).

When the user adds or deletes an edge, the graph structure required by SIPE-2 is maintained
automatically. In particular, no cycles are permitted, and whenever a node has two successors,
there must be an intervening Split node and a corresponding Join node at the ends of the branches.

CÖMan^^TpätStö^HÖas
Operator fctilt

;. Cowiand: .Bodo Edit PI
;:;:g^^eJMtdäfcft3^;:!:

PC Coamand: Add-First
Add-Last
Delete

Ipc 1:
pc 2: (IMMTO-THREAT-ENEMY NAVY.l SKA-LOC.l BNKMY-COA.l LATEST-START.2)
|pc 3: CIMMED-THREAT-ENEW2 AIR.l AIR-L0C.1 EHEMY-COA.l LATEST-START.3)

[ABORT] , [EHIT]

NEW-JOINT-SHOW-OF-FORCE

| PURPOSE | |PRECONDITIONS| | SETTING | | RESOURCES] [PROPERTIES] | COMMENT | | EFFECTS | [VARIABLEs|

IOOP:
DETER-IMMED-THREAT
JWMV.1
ENEMV-COA.1
LATIST-STftRT.1

ZI S
LOOP:
DETER-tMMED-THREAl
HAW.1
ENEMY-COA.1
LATEST-STARTS

LOOP:
DETER-IMMED-THREAT
AIR.l

-EHEMV-COA.1
■bATE3T-START.3 X /

SECURE-PORT3
ENEHV-COA.1
V J

mumamm
^Predicate name: AMPHIBIOUB-LANDING

0 Marine: MARINE.1
1 Urban: URBAN.1
2 Enaay-Coa: ENEMY-COA.l
[ABORT] , [EKIT J

Figure 3. Dialog Box

3.2 OPERATOR LEARNER
The Operator Learner refines the partial operators created by the user in the Operator Editor

by learning the preconditions that the planning system uses to determine when the operators can
be applied.

The Operator Learner uses an operator's qualitative constraints (QCs): partial knowledge
specified by the user) to generate a series of experiments, each of which specifies a set of
constraints on the planning process. By varying these constraints, the Operator Learner tests the
quality of the plans produced by using the operator under a range of conditions. An external
module evaluates the plan, and the Operator Learner again uses the QCs to extract training
instances describing the world state, plan, and evaluation result.

PAGODA analyzes these training instances to create a hypothesis of the conditions under
which the operator is expected to succeed. The result is interpreted by the Operator Learner as a
precondition for the operator, and is incorporated into the operator definition, subject to the expert
user's approval.

The system learns preconditions via feedback from a simulator or by observing the user's
planning choices. The simulator feedback tells the system what actions succeeded and how long it
took to complete these actions. What will be learned in this case is a description of a particular
operator's success in the simulator (i.e., the world state in which the operator succeeds); therefore,
the learned knowledge is only as accurate and complete as the simulation. However, if multiple
simulators are used, their "domains of expertise" could be combined for completeness.

8

The user's planning choices are indications of the user's belief that a particular operator will
succeed. If the user chooses operator A over operator B in a particular context, it is assumed that
operator A is "successful" in that context and operator B "fails." Typically, the user has knowledge
that is not captured in the system (which is why the preferred mode of the planning system is
interactive). Learning methods based on observing the user allow us to make explicit some of this
previously unrepresented knowledge. This process and some problems that arise in its application
are discussed in Subsection 3.2.5.

The architecture of the Operator Learner is shown in Figure 4. The Operator Learner is
composed of four major processes (Operator Creation, Operator Refinement, Experiment
Generation, and Data Generation), each with one or more subprocesses. These processes are
described in the following subsections.

3.2.1 Operator Creation
The Operator Editor is used to create one or more operators with partial preconditions,

represented as QCs, that represent user-provided guidance that may be partial or incomplete. The
QCs are used to guide the learning process. By expressing QCs, users can intuitively specify
abstract constraints on the operator (e.g., by specifying relevant properties for determining
success), even when they cannot precisely and completely specify the actual constraints. Some
examples of QCs follow:

• "Bad weather usually delays transportation actions, and air movements are more
likely to be delayed than sea movements."

• "The equipment required to clean up an oil spill depends on the type and amount of
oil, weather, water currents, and response time."

• "Republicans are less likely than Democrats to vote for social programs."
None of these QCs are precise enough to be used as preconditions by the planning system, but they
significantly constrain the space of possible preconditions, making the automated learning of
preconditions via refinement of the QCs computationally feasible. In the current KATY
implementation, QCs represent generalizations of preconditions (predicates with underspecified
arguments). The system fills these in by systematically varying the values of the arguments (see
Subsection 3.2.2).

The QCs of an operator are specified on its properties slot, and can be created and modified
in the Operator Editor. Each QC matches SlPE-2 predicates or properties of objects in the SEPE-2
sort hierarchy. Arguments to a QC can be a wild card (*) that matches anything, arguments
(variables) of the operator that contains the QC, or objects or classes (the latter match any object
of that class). Negated predicates are allowed.

For example, the QCs of the operator ml -ge t -booml, shown in Figure 2, are (%property
max-sea-state boom.l*) and (sea-state sea-sector. 1 latest .1 *). The first QC
refers to the max-sea-state property of the variable boom. 1 (the most severe level of ocean
conditions under which the boom is effective). The user has indicated that the max-sea-state
can take on any value with the asterisk (*) as an argument, so the Operator Learner will have to
use its learning methods to identify the correct value(s). The second QC indicates that the
sea-state predicate (ocean conditions) for sea-sector. 1 (the location of the operation) at
time latest. 1 is relevant. Again, * indicates that the value has not been constrained, so the
system must learn the correct value.

Operator
Creation Operator

Editor

Inductive
Learning
Interface

training
example

Generate
Training
Example

evaluation

of plan

Evaluate
Plan

updated
operators

operators

with qualitative

constraints

learned

preconditions Learning
Control

Operator
Refinement

Data
Generation

Generate
Plan

operator
to learn

Generate
Experiments

experiments

\ Select
Experiment

experiment

Experiment Generation

Figure 4. Operator Learner Architecture

10

3.2.2 Operator Refinement
The Operator Refinement process provides the overall control for the Operator Learner. The

Learning Control subprocess decides which operator to learn (currently, this decision is made when
the user explicitly invokes the learning system) and calls the Experiment Generation process. The
Inductive Learning subprocess provides a generic interface to an external inductive learning
module. We are currently using PAGODA (Subsection 3.2.5) as this module. However, this
interface has been developed in a general, transparent way that permits the use of other inductive
learning software.

After inductive learning takes place, the learning system must decide whether to continue
generating experiments, or whether to stop learning. Learning should stop when one or more
acceptable preconditions based on the QCs have been learned, or when none could be found. At
present, the user enters this decision manually, after the system asks the user whether to continue.
If more learning is required, another experiment is selected and the loop continues. If no more
learning is to be done, the learned preconditions are passed back to the Learning Control process.
The preconditions are then presented to the user, who indicates whether or not to add them to the
operator and adjusts the operator's QCs. Again, this process is currently manual; an open problem
is to develop methods for automating the process. Finally, the updated operators are stored in the
domain knowledge base.

3.2.3 Experiment Generation
Using the QCs in the operator(s) to be learned, the Generate Experiments subprocess

generates a list of experiments. Each experiment represents a set of constraints to be applied during
the planning process, and consists of a problem to solve, operators to select, variable bindings to
apply during operator expansion, additional world predicates to establish, and new objects and
properties to define. Arguments to the QC that are filled with variables are either predefined (for
nonlocal variables that are bound before this operator is even applied) or are to be selected by the
QC (for local variables whose values need to be set in accordance with the constraints specified in
the precondition). The two types of variables require different constraints on the planning process
to establish their values.

The other arguments (* or class names) are values that provide constraints for determining
whether or not to select this operator, and for instantiating the other variables within the operator.
These values, however, cannot be set directly; they are dependent on the variable choices (e.g., in
ml-get-booml, themax-sea-state value * depends on the choice of boom. 1). For
example, in the ml-get-booml operator in Figure 2, the first QC indicates that the resource
boom. 1 should be selected, in part, on the basis of its max-sea-state value. That is, the variable
boom. 1 should be bound to a boom with an appropriate value for max-sea-state, where the
meaning of appropriate is yet to be defined. Moreover, selecting a boom with an inappropriate
value for max-sea-state may cause the operator to fail. The second QC indicates that the
sea-state at the place and time of the operation will be relevant for determining whether or not
to select this operator. If the sea-state does not fall within an appropriate range (again, where
the precise meaning of appropriate must be learned), the operation may fail.

11

The generated experiments should therefore vary the values of the wild cards (corresponding
in this example to the max-sea-state value of boom. 1 and the sea-state in sea-sector. 1
at time latest. 1), generate plans and plan evaluations to collect data about the success of the
operation for different values of these wild cards, and construct hypotheses about the values
required for the operator to succeed.

To select the possible values for each wild card, the system matches each QC against the
initial world state. From the set of all possible matches (instantiations of the QC), the system then
selects a representative subset by associating a value with each QC. This subset consists of a list of
bindings for the wild cards in the QC. (Wild cards include the * argument and class names, but not
variable names.) One instantiated QC is selected for each value that was seen.

For example, in ml-get-booml, for the sea-state QC, the matches might be

(sea-state sf-bay 1 1)

(sea-state richards-bay 1 2)
(sea-state drakes-bay 11).

In this case, the values are 1,2, and 1, respectively, and the first and second matches would be
selected. For each of these matches, one or more constraints are identified that will result in this
instantiation of the QC in a generated plan. Local variables (those whose value can be selected at
the time the operator is applied) have variable binding constraints. For nonlocal variables, whose
value has been determined in a previously applied operator, the process is more complicated, and
requires that the initial world state be modified in such a way that the variable will be bound as
desired. For example, sea-sector. 1 in ml-get-booml is bound at a previous planning level to
a location that is defined as a sensitive area in the planning scenario. We do not have a general
solution for computing the required modifications, so the user or system designer must tell the
system the correct predicate(s) to establish for each QC.

The cross-product of experiments for each QC is formed, resulting in a list of combined
experiments. This is currently done explicitly, but in principle could be done dynamically as
individual experiments are selected for each QC. The Select Experiment subprocess then selects
an experiment from the list, by asking the user to chose one, or by selecting the first experiment on
the list. An open issue that remains to be resolved is to develop methods for selecting an experiment
automatically.

3.2.4 Data Generation
The Data Generation process uses the selected experiment to create the appropriate input data

(training examples) for the Inductive Learning subprocess. This process incorporates three
components, Generate Plan, Evaluate Plan, and Generate Training Example.

3.2.4.1 Generate Plan
A plan is generated interactively or automatically, using the constraints represented by the

selected experiment. The constraints that can be specified in an experiment are as follows.
• Variable Binding: bind a given variable to a given value in the specified operator.
• Operator Selection: always select a specified operator when it is applicable.
• Predicate Assertion: assert one or more predicates in the initial world state.
• Object Creation: define a new object with given properties before planning.

12

The implementation of these constraints uses SlPE-2's built-in hooks for variable binding, operator
selection, and predicate/object definition; therefore, we wrote relatively little code to implement
this module.

If other plans have already been generated using similar experiments, a limited capability
exists to reuse those plans. Specifically, the system can define new objects and rebind variable
values in an existing plan. Therefore, if a new experiment differs from a previous one only in the
variable-binding constraints, the system can reuse the plan, rather than constructing a new one from
scratch. Additional development would also allow the system to use SlPE-2's replanning
capabilities to apply different operator-selection and predicate-assertion constraints to previously
generated plans.

3.2.4.2 Evaluate Plan
The plan is sent to the evaluation module, which returns an evaluation that indicates the

success or failure of the overall plan and of individual actions or action sequences in the plan. The
definition of "success" depends on the domain and on the purpose of the operator being learned
(e.g., whether a unit arrived on time, or oil was successfully cleaned up).

Plan evaluation is a difficult problem in general. When plan evaluation methods are used in
conjunction with other tools such as the Operator Learner, the inherent difficulty of plan evaluation
is exacerbated by the need for the evaluator and learner to share a semantic representation of the
plan. In the rest of this section, we discuss the problems that arose in this area during this project.

One factor that made it difficult to assess the success of an operator in the oil-spill domain is
that there is not a direct mapping between the purpose of a given operator and the quantities
returned by the evaluation model. There are three primary reasons for this lack of direct mapping:
first, multiple operators are often applied to achieve a single shared goal, so credit assignment is a
problem. For example, in the ml -ge t -booml operator, the purpose is to get a certain quantity of
boom to the location of the operation; this can be done by combining several operators that each
bring a smaller quantity of boom to the final destination. Therefore, the actions in a given operator
may succeed, although it fails to achieve its overall purpose.

Second, the purpose in the SlPE-2 sense may not match the conceptual purpose of the operator.
In the ml-get-booml operator, the purpose slot lists the boom level as the operator's purpose, but
a planning expert would say that the actual purpose of this operator is to contain a certain quantity
of oil. Although the operator clearly would fail if the boom did not arrive in the given location by
the required time, the operator would also fail if the boom did not work properly in the prevailing
ocean conditions; this conclusion is not explicitly stated in the purpose slot.

Finally, even if "containing the oil in the sector" were explicitly stated in the operator's
purpose, that goal would not be explicitly represented in the evaluation model. Rather, the output
of the evaluation model specifies the quantity of oil in each sector at each point in time, as well as
the quantities that have washed up on shore, evaporated, or been transported out of the sector
(e.g., via skimmer). "Containing the oil" thus must be translated into a quantitative measure of
those values, which raises many questions: How much oil must be contained (and by what time),
for the operator to be considered successful? When oil is removed by skimmer and barge, so that
no oil is left in the sector and no oil has escaped, should the operator be considered to have
succeeded? If the oil sinks before it is contained, so that it cannot be cleaned up although the ocean
surface is clear, has the operator succeeded?

13

In the military transportation planning domain, there appears to be a more obvious mapping
between operator purpose (in deployment planning, the purpose is usually to ensure that a given
unit arrives at a location by a specified time) and simulator results for at least a subset of
deployment operators (although this is not always true). In general, we believe that better
ontologies and reasoning methods for mapping between plans (and planning knowledge) and
evaluation criteria are needed, for these applications to interact effectively.

3.2.4.3 Generate Training Example
The Operator Learner next uses the qualitative constraints to generate a training example for

the operator being learned, using the new plan and its evaluation. The training example consists of
the relevant world state (i.e., any instantiations that match the qualitative constraints) at the point
in the plan where the operator was applied, and a positive or negative label, depending on whether
the operator succeeded or failed.

The world state at a specified node is generated by executing the plan up to that node. (The
effects of this execution are undone after the training example is generated.) The qualitative
constraints in the operator being learned determine which predicates and properties are extracted
from the world state.

The training example is sent to the inductive learning system. This procedure currently uses
PAGODA, but is implemented as a "black box" module that could be replaced by a different
induction method, or by multiple competing methods.

3.2.5 Learning from an Expert User
In addition to learning from simulators and automated evaluation tools, the Operator Learner

can learn from an expert's planning choices. Whenever the planner chooses an operator during
planning, a set of training examples are generated that describe the planning context (i.e., the state
of the world at the node where the operator was applied). A positive example is generated for the
chosen operator, indicating that the operator is applicable in that context. Negative examples are
generated for each operator that is not selected, indicating that the operator does not apply (or is
less applicable) in the current context. For example, if the planner frequently picks a certain
operator for actions in the Middle East, and a different operator for actions in the Pacific region, a
geographic precondition would be learned for each operator.

In the process of learning from the user, the feedback consists of training examples generated
by the users from the choices they make during planning. The user may guide the learning process
by deliberately setting up planning problems on which to train the system, or may simply train the
system "on the job" by allowing it to observe the expert's planning behavior during the actual
planning process. The latter method is a particularly useful way to apply machine learning
techniques during actual planning, since knowledge is continuously acquired throughout the life of
the system. The incremental nature of PAGODA is an advantage for this type of learning, because
the system improves its behavior incrementally as each new training example arrives.

Each training example consists of a description of the world state at a particular point in the
training example, and an operator that the user did or did not choose; these operators correspond
to positive and negative training examples, respectively. These examples are used to induce
candidate preconditions for the operators. The same inductive learning techniques that are used for
the feedback from the simulator are applied to learn these preconditions.

14

These examples are more likely to be "noisy" or incorrect than the examples received from
the simulator, for the following reasons: (1) users sometimes make arbitrary or incorrect choices;
(2) false negatives occur, since more than one operator may be applicable and the operators that
are not selected are classified as negative examples; (3) the user may understand certain aspects of
the situation that are not reflected in SlPE-2's world state; (4) users sometimes exhibit superstitious
behavior (always preferring a particular operator even when another would be more appropriate);
and (5) planning may later fail, indicating that the operator choice was incorrect. The last of these
conditions can sometimes be detected by identifying cases in which the system backtracks and an
alternative operator is applied during backtracking. To remedy the other incorrect examples,
probabilistic learning methods are used, and learned knowledge is always confirmed with an expert
user before being added to the system.

In essence, this process consists of acquiring "hidden" knowledge: that is, knowledge that the
user has but that may not be explicitly represented in the system. In this case, nothing in the
learning system's representation of the current world state enables it to distinguish between two
situations in which the user makes different decisions. The system could infer that there should be
an additional predicate to represent this distinction, and would then add the predicate to its
representation for future use. This process would enable us not only to refine the operators, but to
improve the representation of the domain.

3.3 PAGODA
PAGODA is a model for an intelligent autonomous agent that learns and plans in complex,

nondeterministic domains [desJardins 1992]. The guiding principles behind PAGODA include
probabilistic representation of knowledge, Bayesian evaluation techniques, and limited rationality
as a normative behavioral goal.

We are using only the probabilistic inductive learning component of PAGODA for this project.
The inductive hypotheses are represented as sets of conditional probabilities that specify the
distribution of a predicted feature's value, given a set of input features. A probabilistic inference
mechanism allows PAGODA to make predictions about the value of the output feature in a given
world state by combining the relevant probabilities.

Theories are generated by means of a heuristic search process, guided by the training
examples. The theories are evaluated by means of a Bayesian technique that provides a tradeoff
between the accuracy and the simplicity of learned theories. The prior probability of a theory is a
measure of its simplicity—shorter theories are more probable.

Since SlPE-2 cannot represent the probabilistic theories learned by PAGODA as preconditions,
we use thresholding to create deterministic preconditions. Information is lost in this process: in
general, the deterministic preconditions are overly strict (i.e., they sometimes rule out an operator
in a case where it is, in fact, applicable). Each rule that PAGODA learns states that in situation S, an
action or operator A succeeds with probability P. The learning system analyzes the theories (rule
sets) to identify situations S such that if S is true, A succeeds with probability greater than some
threshold P5WCCC55; if Sis false, A fails with probability greater than another threshold Pfauure. These
situations are the discrimination conditions for A, and are added to the system as preconditions
after they are confirmed by the user.

15

To give a very simple example of how inductive learning works, suppose that in
ml -ge t -b o om 1, the result of evaluating the plan is such that regardless of the specific sea-sector
and time, whenever the value of the sea-state predicate is 3 or less, the operator succeeds, and
whenever it is 4 or more, the operator fails. The learning system would form the hypothesis

(sea-state sea-sector. 1 latest. 1 [1-3]) => success
(sea-state sea-sector. 1 latest. 1 [4-5]) => failure.

If there is noise or randomness (e.g., in some cases the operator fails, even though sea-state is 3 or
less, or sometimes succeeds when sea-state is 4 or 5), the probabilistic hypothesis evaluation model
built into PAGODA determines the most probable hypothesis. The hypothesis evaluation and
inductive learning mechanisms of PAGODA are detailed elsewhere [ibid.].

3.4 PREDICATE EDITOR
The Predicate Editor is a revised and generalized version of what was originally called the

Information Window in SOCAP. Previously, this display was tailored to a particular scenario,
showing specific world predicates in each of six fixed panes. The generalized Information Window
allows the user to tailor a presentation for different domains and for different views of a given
domain, by specifying how many panes appear, and which predicates are displayed in each pane.

3.5 GKB EDITOR
Under a separate contract, SRI has developed the GKB Editor for editing class and object

hierarchies [Karp, Myers, and Gruber 1995]. The GKB Editor provides a graphical interface for
browsing and modifying classes and instances and their properties. The underlying representation
is the Generic Frame Protocol (GFP), so object hierarchies created with the GKB Editor can be
shared with any system that understands (or provides an interface to) the GFP. KATY provides an
interface to this editor for creating and modifying the SlPE-2 sort hierarchy.

4 SIMULATORS

Our original proposal was to develop and apply knowledge acquisition tools in SOCAP's
military transportation application domain. Due to representational inadequacies of the available
transportation simulators, and the integration difficulties their use presented, we decided to use an
oil-spill domain instead. In the following subsections, we discuss the simulators and evaluation
tools that were available for the oil-spill and military deployment domains, and explain why we
selected this oil-spill domain.

4.1 OIL-SPILL DOMAIN
The Operator Learner demonstrations used an oil-spill planning domain, as noted above. The

Spill Response Configuration System (SRCS) plans responses to coastal oil spills and identifies
equipment shortfalls. The SRCS incorporates a spreadsheet-based evaluation model that is used for
the feedback required by the Operator Learner.

16

The oil-spill domain is a good analogue to the military transportation planning domain, so that
our development work for the oil-spill-based demonstration can be applied directly to the military
domain. Both domains are crisis response planning situations, where actions to respond to an
emergency must be identified, along with the resources needed to perform the actions. In both
cases, methods for moving the requisite equipment to the crisis site must also be identified.

The success of an action in a plan in the oil-spill domain translates to the percentage of oil
cleaned up in the specified sector. In the demonstration scenario, positive instances for the learning
system are those actions resulting in greater than P% of the oil being cleaned up (where P is a fixed
value determined by a domain expert). A future research direction would be to explore methods of
learning the degree of success of an action.

The success of an action in the oil-spill domain has a direct analogue in the military
transportation planning domain, where the degree of success is determined by how much time a
unit is delayed (i.e., whether and by how much time a unit arrives late) and how many resources
(transportation assets, fuel, or personnel) are used.

We identified three alternative demonstration scenarios, in addition to the sea-state example
described in Subsection 3.2. The first of these scenarios was used for the final project
demonstration, which showed the system learning high-level strategies for oil-spill cleanup by
observing the user's choices. The three scenarios are outlined below.

1. In the top-level operators, learn the conditions under which each type of operation is
effective. This learning activity might involve identifying the priority of each
targeted sea sector, based on the expected degree of effectiveness of the plan; or it
might involve simply learning preconditions to identify the best single sea sector.
The factors relevant to this prediction include
- The proximity of cleanup site to spill
- The depth of water (shallower water makes cleanup more effective)

- The location of protected areas
- The equipment available
- Weather conditions.

2. At the middle level of planning, learn which type of skimmer works best under which
conditions. The relevant factors include
- The sea state (a number summarizing the severity of weather, which is in turn

determined by tides, waves, and currents)
- The oil thickness (available from the trajectory model)
- The encounter rate (determined by sweep area, speed, and skim rate, which are

properties of the boat and boom used)
- The recovery rate (i.e., the percentage of the oil encountered that is successfully

skimmed)
- The efficiency
- The pump rate
- The storage capacity (on board, as well as in bladders or tugs available for

offloading)
- The personnel available
- The time of day.

17

3. At the lowest level of planning, learn to predict the length of boom required for a
given situation. Relevant factors include
- The weather and ocean conditions
- The angle of boom with respect to current (a shallow angle is more effective in

deflecting, but requires more boom)
- The ocean current
- The boom height
- The purpose of using boom (excluding oil from a protected area, versus

deflecting it to a shore or water area where it will be cleaned up)
- The type of boom
- The depth of water
- The leakage rate (determined by the above factors)
- The number of booms (e.g., doubling booms reduces leakage but requires twice

as many boom feet).

These scenarios show the wide range of applicability of the learning-based methods at all
planning levels. Inductive learning methods enable the system to identify the factors relevant to the
success of each planning operator, and to aggregate these factors to an appropriate level for each
step in the decision-making process.

4.2 MILITARY DEPLOYMENT DOMAIN

In the deployment planning scenario we originally proposed, severe weather conditions
would cause certain types of ports (e.g., those with unsheltered harbors) to become unavailable,
and certain types of operations (e.g., transport, loading, and offloading) to take longer than usual.
In addition, decisions about the allocation of resources such as ports, transportation assets, and
personnel would be made by matching the capabilities of the resources to the requirements
imposed by the plan. We decided to use the oil-spill domain instead of the transportation planning
domain or another military planning domain (e.g., joint operations planning or air campaign
planning) because of the availability and suitability of a plan evaluator for the oil-spill domain. In
particular, the available simulators were unable to represent the factors that would impact the
planning process, as listed above, and/or the cost of integration was too high. In this subsection, we
briefly describe the simulators that were available for military planning domains.

4.2.1 PFE

The Prototype Feasibility Estimator (PFE) is a transportation simulator developed by Bolt
Beranek and Newman Inc. (BBN). It uses a very simple model of port capability, and does not
model weather or other aspects of the situation. To be usable in this project, PFE would have to be
provided with a time-phased description of port availability. In addition, the computation of
movement times would have to be modified to depend on a wider range of environment features,
such as the current weather.

These revisions could be incorporated by using the time-phased port availability information
to compute PFE's input (i.e., the set of available ports), and by reimplementing PFE's
time-computation component, which would require substantial development effort. In addition,
using PFE would require the use of FMERG* to expand the major force-level plans generated by
SOCAP to the correct level for running the simulator. FMERG has not been maintained since the

18

Integrated Feasibility Demonstration 2 (IFD-2) demonstration; although we had installed it and
spent some time working on its integration into SOCAP, we realized that it would be unrealistic to
rely on FMERG for this project.

4.2.2 TransSim
We acquired the TransSim transportation scheduler/simulator from the University of

Massachusetts (UM), and had a series of discussions with members of the TransSim development
team about using their software. TransSim has some features that might make it a better choice than
PFE for a military demonstration scenario. TransSim takes into account ship speeds, ship, port, and
berth availability, and weather conditions; all of these are represented explicitly and are easy to
vary programmatically. It also incorporates UM's CLIP/CLASP data collection package. On the
other hand, TransSim expects Time-Phased Force Deployment Data (TPFDD) as input. FMERG
would therefore be required for translation from the major force level of SOCAP's plans to the
TPFDD level. As previously explained, the use of FMERG for the project was not feasible.

4.2.3 TACWAR
We examined the extensive documentation on the TACWAR wargaming system. TACWAR

is used for wargaming at the U.S. Central Command and at other locations; it was developed and
maintained by the Institute for Defense Analysis (IDA) in Washington, D.C. TACWAR was
promising because it is the simulation system that most closely matches the type of scenario (joint
military operations) that was encoded by the operators developed for SOCAP as part of IFD-2.

We concluded that TACWAR would be suitable for use as a simulator to execute high-level
plans created by SOCAP. SOCAP could be used to determine when a unit arrives and where it is
located, as well as its mission and posture; given this information, TACWAR would be run in batch
mode to simulate the battle. The granularity of the representations of units, geography, and events
used by TACWAR appears similar to that used by SOCAP.

However, the integration effort required to use TACWAR would have been large. It would
have required obtaining a copy of TACWAR (which was previously part of the Common
Prototyping Environment [CPE], but was no longer supported at the time we were evaluating
simulators for this project); obtaining a suitable, unclassified TACWAR scenario that would
obviate the creation of the voluminous input files required by TACWAR; implementing the
scenario in SOCAP; extracting the plan from SOCAP in a form suitable for TACWAR; adding new
operators to correspond to TACWAR's missions and postures; establishing scenario-controlling
parameters that are independent of the plan generated by SOCAP; and extracting the results of the
simulation for use by SOCAP. We concluded that the TACWAR integration effort was beyond the
scope of this contract.

4.2.4 CTEM
We discussed with ISX Corporation the possible use of CTEM in this project. CTEM is used

in the ACPT for air campaign plan evaluation. We determined that CTEM would be too difficult
to acquire (because of security classification problems) and would not provide feedback at an
appropriate level of detail. Also, at the time we were prepared to use it for this project, the
knowledge acquisition process required for SlPE-2 to work in the ACP domain had not yet been
completed.

*FMERG: Force Module Enhancer and Requirements Generator.

19

5 EVALUATION METRICS

We were unable to perform a formal evaluation of KATY under this contract, due to time and
funding limitations. Our experience has shown the knowledge editing tools to be extremely useful,
substantially reducing development time and the likelihood of errors. The Operator Learner
performed well in the simple demonstration scenarios we developed, and we expect that the
learning techniques used in the Operator Editor will scale up well.

We identified a number of operationally relevant evaluation metrics, both quantitative and
qualitative, for future evaluations of KATY. These metrics include

• The quality of plans, measured in terms of probability of success (e.g., in a
simulator), or subjectively by an expert user

• The time required for a user to create new planning operators

• The quantity of data needed for acquiring knowledge (e.g., the number of training
examples required by the inductive learning system)

• The computational time and memory required to run simulations and the learning
system.

In addition to these system evaluation metrics, our approach, acquiring planning knowledge
from on-line simulators and evaluation tools, raises the issues of plan evaluation and measuring
plan quality. These metrics are required by any system whose function is to improve planning
performance, since is impossible to improve performance without some measurement of that
performance.

Simulators are one obvious type of plan evaluation tool for the domains in which they exist
and are considered to be reliable. Many military domains (including transportation planning) use
simulators to verify plans generated by humans, so it seems reasonable that a learning system
should consider these simulators to be reliable sources of knowledge.

In the oil-spill domain, oil-trajectory models and utility analysis of oil-spill damage are
widely regarded by the community of domain experts as an effective tools for evaluating response
contingency plans. The demonstration we have developed in this domain uses an oil-trajectory
model and a spreadsheet-based utility analysis of the generated plan. These tools enable the system
to gather feedback about the success of the operators being learned, and enable the user to assess
the quality of the plans that are generated by the system.

6 RELATED WORK

The problems we have addressed in the work described here, and the methods we have used
to solve the problems, are similar to problems and methods described in recent research on
experiment generation, knowledge acquisition, and learning apprentices. In addition, several
researchers are studying ways to improve the performance of planning systems via machine
learning.

20

Gil [1992] describes research on experiment generation for knowledge acquisition in
planners. The general approach she uses is to identify missing preconditions by observing when
actions fail, and then to generate experiments to determine the correct precondition. Some of the
methods described by Gil are applicable to the problem of experiment generation in KATY, but
many problems remain to be solved (see Section 8).

Much of the research in the knowledge acquisition community has focused on structuring the
global knowledge acquisition process. EXPECT is a knowledge acquisition architecture that
dynamically forms expectations about the knowledge that a problem-solving system needs to
acquire, and then uses these expectations to interactively guide the user through the knowledge
acquisition process [Gil and Swartout 1994]. Davis [1993] describes the use of metalevel
knowledge in TEIRESIAS, an expert system for stock market investment advising, to guide
identify new rules to be added to the expert system. The metalevel knowledge allows the system
to "know what it knows," and therefore to identify and repair bugs in its knowledge base (missing
or incorrect knowledge). Eshelman et al. [1993] describe MOLE, a knowledge acquisition system
for heuristic problem solving. MOLE generates an initial knowledge base interactively, and then
detects and corrects problems by identifying "differentiating knowledge" that distinguishes among
alternative hypotheses. Ginsberg, Weiss, and Politakis [1993] have developed SEEK, which
performs knowledge base refinement by using a case base to generate plausible suggestions for rule
refinement. These methods, which view the knowledge base as a whole, complement the Operator
Learner's approach of focusing on refining individual operators.

Learning apprentices are a recent development in knowledge acquisition tools. Mitchell,
Mahadevan, and Steinberg [1993] characterize a learning apprentice as an "interactive,
knowledge-based consultant" that observes and analyzes the problem-solving behavior of users.
One advantage of a learning apprentice is that it is running continuously as the system is used by
a wide range of users; thus, the evolving knowledge base reflects a broad range of expertise. These
researchers developed the LEAP apprentice, which uses explanation-based learning (EBL)
techniques to explain and generalize cases (traces of the user's problem-solving behavior) in the
domain of digital circuits. DISCIPLE [Kodratoff and Tecuci 1993] also uses EBL, as well as
similarity-based learning, to acquire problem-solving knowledge in the domain of design for the
manufacturing of loudspeakers. The Operator Learner is similar to a learning apprentice in its
mode of learning from the user, but uses inductive methods rather than EBL, allowing the system
to acquire a broader range of new knowledge without the need for domain theories. Since we also
learn from external simulators, there is less burden on the user to provide a complete set of training
examples from which the system learns.

Wang and Veloso [1994] have developed a system that inductively learns planning control
knowledge. Their system makes some simplifying assumptions (e.g., that there is no randomness,
and that the system has a complete domain representation) that limit the applicability of their
approach to complex, real-world domains. KATY permits randomness, and allows the user to guide
the learning process using QCs, which we believe to be critical for large-scale domains.

Calistri-Yeh and Segre [1994] describe an ARPI-sponsored adaptive learning and planning
system (ALPS). The primary mechanism for learning within their system is the use of a set of
speedup learning techniques to improve planning performance. Their Probabilistic Theory
Revision mechanism refines incorrect or incomplete domain theories, and can be viewed as a type
of learning or adaptation. Veloso and Borrajo [1994] use a combination of bounded explanation

21

and inductive generalization to learn control rules for planning systems. Learning control rules is
a slightly different problem than that addressed by KATY—the former focuses on improving the
efficiency of the planning process, whereas the latter is concerned with its correctness. These two
methods could be combined in order to improve performance along both dimensions
simultaneously.

7 PUBLICATIONS

The following publications were written during the contract. These publications are also
included in the list of references in Section 9.

• desJardins, M. 1994a. "Evaluation of Learning Biases using Probabilistic Domain
Knowledge," in Computational Learning Theory and Natural Learning Systems,
Vol. 2, eds. S.J. Hanson et al., the MIT Press, Cambridge, Massachusetts.

• desJardins, M. 1994b. "Knowledge Acquisition Tools for a Military Planning
System," presented at the 1994 IEEE Conference on Tools with AI, New Orleans,
Louisiana (November); in Proc. 1994 IEEE Conference on Tools with AI, Morgan
Kaufmann Publishers Inc., San Francisco, California.

• desJardins, M. 1994c. "Knowledge Development Methods for Planning Systems,"
presented at the AAAI Fall Symposium on Planning and Learning, New Orleans,
Louisiana (November); in Working Notes of the AAAI Fall Symposium on Planning
and Learning, AAAI Press, Menlo Park, California.

• desJardins, M. 1994d. "The Use of Relevance to Evaluate Learning Biases,"
presented at the AAAI Fall Symposium on Relevance, New Orleans, Louisiana
(November); in Working Notes of the AAAI Fall Symposium on Relevance, AAAI
Press, Menlo Park, California.

• Gordon, D.F., and M. desJardins. 1995. "Evaluation and Selection of Biases in
Machine Learning," Machine Learning 20(1/2), pp. 5-22 (July/August).

• desJardins, M. 1995. "Goal-Directed Learning: A Decision-Theoretic Model for
Deciding What to Learn Next," in Goal-Driven Learning, eds. A. Ram and
D.B. Leake, the MIT Press pp. 241-250, Cambridge, Massachusetts.

• desJardins, M. 1996. "Knowledge Acquisition Tools for Planning Systems," in
Advanced Planning Technology: Technological Achievements of the ARPAl Rome
Laboratory Planning Initiative, ed. A. Täte, AAAI Press, Menlo Park, California.

8 CONCLUSIONS AND FUTURE WORK

Automated and semiautomated tools for knowledge acquisition will become increasingly
essential as large-scale planning systems are developed and deployed. Our research in this area has
led to initial prototypes of two types of tools: interactive graphical editors for developing planning
knowledge, and an inductive learning system that uses simulator feedback and the user's planning
choices to refine and verify partial operators.

22

On the basis of ongoing usage and evaluation of these prototypes, we believe that both the
editor and the learning system form essential parts of a knowledge developer's toolkit for
constructing large-scale planning applications. The key advantages these tools provide, which will
enable the development, deployment, and ongoing maintenance of realistic planning applications,
are

• Template-based editing methods for constructing individual planning operators,
reducing the likelihood of errors in the development process, and reducing the
tedium of operator construction

• A framework for acquiring knowledge from multiple sources (plan evaluation
modules, simulators, and expert planner behavior), guided by initial approximations
provided by a knowledge developer.

These tools focus on the development and refinement of individual planning operators. We
also recognize the need for additional tools in KATY, particularly those that guide and manage the
development of the knowledge base as a whole. Some such tools are being developed by others in
the planning research community; for example, researchers at the Jet Propulsion Laboratory have
developed specialized techniques for assessing the consistency and completeness of a knowledge
base [Chien 1996]; and ISI's EXPECT project provides a framework for managing a structured
knowledge acquisition process [Gil and Swartout 1994]. These methods could be generalized and
applied within the SlPE-2 framework.

Future Work. Many of the problems raised during this work have not been addressed in depth
by the machine learning research community. Most of the current research focuses on algorithms
and methods for inductive or explanation-based learning. While developing good inductive
learning methods is important (and we list some specific research directions in that area below),
this work also points to the need for supporting technologies that will enable the effective
application of inductive learning methods. These supporting technologies include representing and
reasoning about bias, experiment generation, knowing when to learn and when to stop learning,
and evaluation methods for complex forms of learned knowledge.

The qualitative constraints used by the operator learner provide a way for the knowledge
developer to feed partial knowledge into the system, without having to specify all of the details of
an operator's preconditions. In machine learning terminology, the developer is imposing a bias on
the learning system. Generalizing the representation and implementation of qualitative constraints
would broaden the types of bias that could be introduced into this process.

The experiment generation capabilities that we developed for this project were tailored for the
small learning problems we examined. In large-scale domains, methods will be needed to select an
appropriate subset of experiments to guide the learning process. Very little work has been done in
this area; the techniques developed by Gil [1992] provide some interesting ideas for directions, but
are limited to fairly simple domains.

The development of stopping criteria that enable the system to know when to stop learning is
directly related to the problem of experiment generation: to construct an efficient sequence of
experiments, one must know when enough experimentation has been performed (or, equally
important, when experimentation is not yielding a useful answer, and other approaches should be
tried).

23

Evaluating the learned knowledge is a nontrivial problem in general, and particularly difficult
in a planning domain. Inductive learning methods are usually evaluated against a test set of
examples that are drawn from the same sample population as the training examples. In the case of
planning knowledge, it may be difficult to generate a test set, and, more importantly, the real
effectiveness of a planning operator can be determined only by using it in the planning process.
Therefore, evaluating the learning process corresponds to evaluating generated plans, which is an
open problem for most application domains.

Finally, the inductive learning methods that have been developed by the machine learning
research community have generally focused on a batch learning situation (where all training
examples are available at the onset of learning), predicting discrete classes using a well-defined set
of input features (e.g., predicting a disease type from a set of symptoms). Our observation is that
for planning problems, and for a learning context where data is expensive to collect and may arrive
continuously over the lifetime of the system, different methods are needed. In particular,
incremental learning methods that continuously revise hypotheses as new data arrives are
necessary. These learning methods must be able to predict numerical values (e.g., the expected
degree of success of an operation, time to complete an activity, or amount of a resource required),
and must be able to reason at a meta-level about the representation they use (e.g., they should be
able to recognize when the domain representation should be extended, as when no good theory can
be learned by using the current representation).

We believe that the prototypes we have developed demonstrate the utility and necessity of
providing tools for knowledge acquisition in the development of planning applications. The tools
in their current form, particularly the operator editor, already provide useful functionality, and are
being used to support knowledge development in an ongoing process. However, this work has also
highlighted the need for additional research directions in machine learning and knowledge
acquisition.

24

9 REFERENCES

Bienkowski, M.A. 1995. Decision Support for Transportation Planning in Joint CO A
Development, ITAD-2062-FR-95-176, SRI International, Menlo Park, California.

Calistri-Yeh, R.J., and A.M. Segre. 1994. "The Design of ALPS: An Adaptive Learning and
Planning System," in Proc. 1994 Workshop on the ARPA/RL Knowledge-Based Planning and
Scheduling Initiative, Morgan Kaufmann Publishers Inc., San Francisco, California.

Chien, S.A. 1996. "Static and Completion Analysis for Planning Knowledge Base Development
and Verification," presented at the Third International Conference on Artificial Intelligence
Planning Systems, Edinburgh, UK (May); in Proc. Third International Conference on
Artificial Intelligence Planning Systems, Morgan Kaufmann Publishers Inc., San Francisco,
California.

Davis, R. 1993. "Interactive Transfer of Expertise: Acquisition of New Inference Rules," in
Readings in Knowledge Acquisition and Learning, pp. 221-239, Morgan Kaufmann
Publishers Inc., San Francisco, California.

Desimone, R., D.E. Wilkins, M. Bienkowski, and M. desJardins. 1993. "SOCAP: Lessons Learned
in Automating Military Operations Planning," in Sixth International Conference on Industrial
and Engineering Applications of AI and Expert Systems (June).

Desimone, R.V., and J.M. Agosta. 1993. "Oil Spill Response Simulation: The Application of
Artificial Intelligence Planning Techniques," in Proc. Simulation MultiConference (April).

desJardins, M. 1992. PAGODA: A Model for Autonomous Learning in Probabilistic Domains. Ph.D.
thesis, University of California at Berkeley, Berkeley, California (available as UCB CS Dept.
Technical Report 92/678).

desJardins, M. 1994a. "Evaluation of Learning Biases using Probabilistic Domain Knowledge," in
Computational Learning Theory and Natural Learning Systems, Vol. 2, eds. S.J. Hanson et
al., the MIT Press, Cambridge, Massachusetts.

desJardins, M. 1994b. "Knowledge Acquisition Tools for a Military Planning System," presented
at the 1994 IEEE Conference on Tools with AI, New Orleans, Louisiana (November); in
Proc. 1994 IEEE Conference on Tools with AI, Morgan Kaufmann Publishers Inc.,
San Francisco, California.

desJardins, M. 1994c. "Knowledge Development Methods for Planning Systems." presented at the
AAAI Fall Symposium on Planning and Learning, New Orleans, Louisiana (November); in
Working Notes of the AAAI Fall Symposium on Planning and Learning, AAAI Press,
Menlo Park, California.

desJardins, M. 1994d. "The Use of Relevance to Evaluate Learning Biases." Presented at the AAAI
Fall Symposium on Relevance, New Orleans, Louisiana (November); in Working Notes of the
AAAI Fall Symposium on Relevance, AAAI Press, Menlo Park, California.

desJardins, M. 1995. "Goal-Directed Learning: A Decision-Theoretic Model for Deciding What to
Learn Next," in Goal-Driven Learning, eds. A. Ram and D.B. Leake, the MIT Press
pp.241-250.

desJardins, M. 1996. "Knowledge Acquisition Tools for Planning Systems," in Advanced Planning
Technology: Technological Achievements of the ARPAIRome Laboratory Planning Initiative,
ed. A. Täte, AAAI Press, Menlo Park, California.

25

Eshelman, L., D. Ehret, J. McDermott, and M. Tan. 1993. "MOLE: A Tenacious
Knowledge-Acquisition Tool," Readings in Knowledge Acquisition and Learning,
pp. 253-259, Morgan Kaufmann Publishers Inc., San Francisco, California.

Gil, Y. 1992. Acquiring Domain Knowledge for Planning by Experimentation, Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, Pennsylvania (August).

Gü, Y., and B. Swartout. 1994. "EXPECT: A Reflective Architecture for Knowledge Acquisition,"
in Proc. 1994 Workshop on the ARPA/RL Knowledge-Based Planning and Scheduling
Initiative, Morgan Kaufmann Publishers Inc., San Francisco, California.

Ginsberg, A., S.M. Weiss, and P. Politakis. 1993. "Automatic Knowledge Base Refinement for
Classification Systems," Readings in Knowledge Acquisition and Learning, Morgan
Kaufmann Publishers Inc., San Francisco, California, pp. 387-401.

Gordon, D.F., and M. desJardins. 1995. "Evaluation and Selection of Biases in Machine Learning,"
Machine Learning 20(1/2), pp. 5-22 (July/August).

Karp, P.D., K. Myers, and T. Gruber. 1995. "The Generic Frame Protocol," in Proc. IJCAI,
Montreal, Canada, Morgan Kaufmann Publishers Inc., San Francisco, California.

Kodratoff, Y., and G. Tecuci. 1993. "Techniques of Design and DISCIPLE Learning Apprentice,"
in Readings in Knowledge Acquisition and Learning, Morgan Kaufmann Publishers Inc.,
San Francisco, California, pp. 655-668.

Mitchell, T.M., S. Mahadevan, and L.I. Steinberg. 1993. "LEAP: A Learning Apprentice for VLSI
Design," Readings in Knowledge Acquisition and Learning, Morgan Kaufmann Publishers
Inc., San Francisco, California, pp. 645-654.

Veloso, M., and D. Borrajo. 1994. "Learning Strategy Knowledge Incrementally," in Proc. 1994
IEEE Conference on Tools with Artificial Intelligence, IEEE Computer Society Press,
pp. 484-490.

Wang, X., and M. Veloso. 1994. "Learning Planning Knowledge by Observation and Practice," in
Proc. 1994 Workshop on the ARPA/RL Knowledge-Based Planning and Scheduling Initiative,
Morgan Kaufmann Publishers Inc., San Francisco, California.

Wilkins, D.E., K.L. Myers, L.P. Wesley, and J.D. Lowrance. 1994. Planning in Dynamic and
Uncertain Environments, final report for Project 1520, SRI International, Menlo Park,
California (January).

26

DISTRIBUTION LIST

addresses nuüih 'ir
of capi'

LOUIS J HQ=S=L
RL/C3C4
525 BROOKS RÖ
ROME Hf 13441-45 0 5

SRI INTERNATIONAL
333 RAVENS400O AV~
MEHLO PARK CA S4025

ROME LABORATORY/3UL
TECHNICAL LIBRARY
26 ELECTRONIC ^KY
RÜHE NY 13441-4514

ATTENTION DTIC-üCC
OEFcNSE TECHNICAL INFO CENTER
8725 JOHN J. KINSMAN ROAD, STE 0944
FT. 8ELVOIR, VA 22060-6213

ADVANCED RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX ORIV5
ARLINGTON VA 22203-1714

RELIABILITY ANALYSIS CENTER
201 MILL ST.
ROME NY 13440-3200

ROME LABORATORY/C3AS
525 3R00KS RD
ROME HY 13441-4505

ATTN: RAYMOND TAOROS
GIOEP
P.O. BOX 8000
CORONA CA 91718-8000

DL-1

AFIT ACADEMIC LI3RARY/L0EE
2 9 5 0 P STREET
AREA ä, 8LDG 642
WRIGHT-PATTERSON AFB OH 45433-7765

OL AL HSC/HRG, BLOG. 190
2698 G STREET
WRIGHT-PATTERSON AF3 OH 45433-7504

US ARM* STRATEGIC DEFENSE COMMAND
CSSD-IM-PA
P.O. BOX 1500
HUNTSVILLE At 35307-3301

NAVAL AIR WARFARE CENTER
6000 E. 21ST STREET
INDIANAPOLIS IN 46219-2189

COMMANDER, TECHNICAL LIBRARY
4747000/C0223
NAVAIRWARCENWPNOIV
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-600.1

SPACE £ NAVAL WARFARE SYSTEMS
COMMAND (PHW 178-1)
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

COMMANDER, SPACE L NAVAL WARFARi
SYSTEMS COMMAND <COOE 32)
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

CDR, US ARMY MISSILE COMMAND
RSIC, 3LOG. 4484
AMSMI-30-CS-R, DOCS
REDSTONE ARSENAL AL 35893-5241

ADVISORY GROUP QN ELECTRON DEVICES
SUITE 500
1745 JEFFERSON DAVIS HIGHWAY
ARLINGTON VA 22202

DL-2

REPORT COLLECTION, CIC-14
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

AEDC LIBRARY
TECHNICAL REPORTS FILE
100 KINQEL DRIVE, SUITE C211
ARNOLD AF3 TN 37389-3211

COMMANDER
USAISC
ASHC-IMD-L,
FT HUACHUCA

BLDG 61801
A2 85613-5000

US OEPT OF TRANSPORTATION
FBlOAt M-457, RM 930
900 INDEPENDENCE AVE, SW
WASH DC 2 25 51

LIBRARY

AIR WEATHER SERVICE TECHNICAL
LIBRARY (FL 4414)
859 BUCHANAN STREET
SCOTT AFB IL 62225-5113

AFiyC/HSO
102 HALL SLVÜ,
SAM ANTONIO TX

ST£ 315
78243-7016

SOFTWARE
CARNEGIE

ENGINEERING
MELLON UNIV?

INSTITUTE
RSITY

4500 FIFTH
PITTSBURGH

AVENUE
PA 15213

NSA/CSS
Kl
PT MrAOE MO 20755-6000

DCMAO/WICHITA/GKEP
SUITE B-34
401 N HARKET STREET
WICHITA KS 67202-2095

OL-3

PHILLIPS LABORATORY
PL/TL CLI8RARY)
5 WRIGHT STREET
HANSCOH AFB HA 01731-3004

THE MITRF. CORPORATION
ATTN: E, LADURE
D460
202 8UP.LINGTQN RO
BEDFORD MA 01732

OUSOCP)/OrSA/DUTD
ATTN: PATRICK 9. SULLIVAN, JR.
400 AR^Y NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

DR JAMES ALLEN
COMPUTER SCIENCE DEPT/3LOG R^ 732
UNIV OF t?3CHESTER
WILSON BLVD
POCHESTtP NY 14627

GR YIGAL APENS
USC-ISI
4676 ADMIRALTY WftY
MARINA DEL SSY CA 90292

DS MARIE A. BIENKÜWSKI
SRI INTEPNATIJNÄL
333 RAVENSWÜOQ AVE/EK 337
MENLO PRK CA ^4025

02 MARK S. 300DY
HONEYW-LL SYSTEMS S, RSCH CENTEP
3660 TECHNOLOGY DRIVE
MINNEAPOLIS HH 55416

DR MAß* BlPSTEIN
33N SYSTEMS 5. TECHNOLOGIES
10 MOULTON STR~ET
CAMSRIOG^ VA 02138

DR GQcGG COLLINS
INST FOR LEARNING SCIENCES
1890 M/5PLE AVE
EVANSTOM IL 6 02 01

DL-4

m. RäNDALL J. CALISTRI-YEH 1
OR ft CORPORATION
301 DATES DRIVE
ITHACA NY 14850-1313

DR STEPHEN E. CROSS 1
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

HS. LAURA DAVIS 1
CODE 5510
NAVY CTR FOR APPLIED RES IN AI
NAVAL RESEARCH LABORATORY
WASH DC 20375-5337

OR THOMAS L. ÖEAN 1
BROWN UNIVERSITY
DEPT Q3= COMPUTER SCIENCE
P.O. 30X 1910
PROVIDENCE RI 02912

OR PAUL P. COHEN
UNIV Or MASSACHUSETTS
COINS OEPT
LEOERLr GRC
ÄMHERST MA 01003

DR JON DOYLE
LABORATORY FOR COMPUTER SCIENCE
HASS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

MR. STU ORAPFR
MITRE
EAGte CENTER 3, SUITE 9
0*FALLON XL 62269

MR. GARY EDWARDS
ISX CORPORATION
2000 N I5TH ST, SUITE 1000

VA 222 01

MR. RUSS FREW
GENERAL CLECT5IC
^OORESTCWN CORPORATE CrNTE
3LDG ATK 14.5-2
H032E5TOWN NJ 03057

OR MICHAEL FEHLING
STANFORD UNIVERSITY
ENGINEERING ECO SYSTEMS
STANFORD CA 94305

OR KRISTIAN J. HAMMOND
UNIV OF CHICAGO
COMPUTER SCIENCE DEPT/RY155
1100 6. 53TH STREET
CHICAGO IL 60637

RICK HAYES-ROTH
CI^FLtX-TEKNOWLEDGE
1810 EMBÄRCADERQ RO
PALO ALTO CA 94303

OR JIM HENDLER
UNIV OF MARYLAND
OEPT Op COMPUTER SCIENCE
COLLEGE PARK HD 20742

MR. MORTON A. HIRSCH8ERS, DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN; AMSRL-CI-CB
ABERDEEN PROVING GROUND MO
21005-5066

MR. MARK A, HOFFMAN
ISX CORPORATION
1165 NORTHCHASE PARKWAY
MARIETTA GA 30067

OR RON LARS EN
NAVAL CMP-, CONTROL £. OC:

RESEARCH, DEVELOP, TEST
CODE 444
SAN DIEGO CA 92152-5000

AN SUR CTR
€ EVAL OIV

MR. RICHARD LOWE CAP-10)
SRA CORPORATION
2000 15TH STREET NORTH
ARLINGTON VA 22201

MR. TED C. KRAL
BSN SYSTEMS £ TECHNOLOGIES
4015 HANCOCK STREET, SUIT£
SAN OI-GD CA 92110

101

V.* (_ "" O

DR. ALßN MrYROWITZ
NAVAL RESEARCH LABORATORY/?
455 5 CVEPLODK AVF
WASH DC 20375

Out

ALICE MULVEHILL
3 ON
10 MTULTON STREET
CAMS3IQGC MA 02233

OR
YAL
p. a
51

DREW MCDERMQTT
£ CaMPÜTSf? SCIENCE DEPT
. 30X 2158, YALE STATION
PRQ?$P£CT STREET

*»£W HAVEN CT Ö6520

OR DOUGLAS SMITH
KESTREL INSTITUTE
3260 HTLLVIEW AVE
PALO ALT 0 CA 94 304

OR. AUSTIN TÄTE
AI APPLICATIONS INSTITUTE
UNIV Oc EDINBURGH
80 SOUTH BRIDGE
EDINBURGH 5H1 IHN - SCOTLAND

DIRECTOR
OAPPA/ITO
3701 H. FAIRFAX DR. 7TH FL
ARLINGTON VA 22209-1714

OR STEPHEN F. SMITH
ROBOTICS INSTITUTc/CMU
SCHENLEY PRK
PITTSBURGH PA 15213

OR. ABRAHAM WAKSMAN
AFHSR/NM
110 DUNCAN ÄVE., SUITE 8.115
BULLING AF3 OC 20331-0001

OR JONATHAN P. -STILLMAN
GENERAL ELECTRIC CRO
1 RIVER PO, RM K1-5C31A
P. 0. BOX S
SCHeNECTADY NY 12345

DL-7

OR EDWARD C.T. WALKER
5 3N SYSTEM S. TECHNOLOGIES
10 MOULTON STREtT
CAMBRIDGE MA 02136

OR BILL SW4RTÜUT
USC/IST
4676 AOHIR<Y
MARINA DEL RAY

WAY
CA 90292

DR KATIÄ SrCÄRft/THP ROBOTICS
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIV
OOHERTY HALL R*i 3325
PITTSBURGH PA 15213

DR. PATRICK. WINSTON
*ASS INSTITUTE OF TECHNOLOGY
RM NE43-317
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

OR JOHN p. SCHILL
ARPA/ISG
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR. WIKE ROUSn
AFSC
7300 HAMPTON RO
NORFOLK VA 23511-6097

MR. DAVID E. SMITH
ROCKWELL INTERNATIONAL
444 HIGH STREET
PALO ALTO CA 94301

JEFF R0THEN8ERG
SENIOR COMPUTER SCIENTIST
THE RAND CORPORATION
1700 MIN STREET
SANTA MONICA CA 90407-213;

OR MATTHEW L. GINSBERG
CIRL, 1269
UNIVERSITY OF OREGON
EUGENE OR 97403

DL-8

MR IRA GOLDSTEIN
OPEN SW FOUNDATION RESEARCH INST
ONE CAMBRIDGE CENTER
CAMBRIDGE MA 02142

MR JEFF GROSSMAN, CO
NCCOSC ROTE DIV 44
5370 STLVERGATE AVE, ROOM 1405
SAN DIEGO CA 92152-5146

JAN GÜNTHER
ASCENT TECHNOLOGY, INC.
64 SIDNEY ST, SUITE 380
CAMBRIDGE MA 02139

DR LYNETTE HIRSCHMAN
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

DR ADELE E. HOWE
COMPUTER SCIENCE QEPT
COLORADO STATE UNIVERSITY
FORT COLLINS CO 80523

DR LESLIE PACK KAELBLING
COMPUTER SCIENCE DEPT
BROWN UNIVERSITY
PROVIDENCE RI 02912

OR SU8BARA0 KAHSHAMPATX
DEPT OF COMPUTER SCIENCE
ARIZONA STATE UNIVERSITY
TEMPE AZ 35237-5406

OR PRADEEP K. KHQSLA
ARPA/ITO
3701 N. FAIRFAX DR
ARLINGTON VA 22203

DR CARLA GOMES
ROME LA30RATÜRY/C3CA
5 25 BROOKS RD
ROME Hi 13441-4505

DL-9

OR MARK T. HAYSURf
ASSOCIATE DIRECTOR OF AI CENTER
ADVANCED INFO SYSTEMS TECH G041
MITRE CORP, BURLINGTON RD, MS K-329
8EDF0SD MA 01730

MR DONALD P. MCKAY
PARAMAY/UNISYS
D 0 BOX 517
PAOLI PA 19301

OR MARTHA E POLLACK
DEPT OF COMPUTER SCIENCE
UNIVERSITY 0~ PITTSBURGH
PITTSBURGH PA 15260

OR EÖWINA PISSLAND
DEPT OF COMPUTER S, INFO SCIENCE
UNIVERSITY OF MASSACHUSETTS
AHHERST MA 0100 3

OR MANUELA VELOSO
CARNEGIE MELLÜN UNIVERSITY
SCHOOL 0- COMPUTER SCIENCE
PITTSBURGH PA 13213-3391

OR DAN sJELO
DS»T üc COMPUTER SCIENCE
**AIL STOP =R-35
UNIVERSITY OF WASHINGTON
SEATTLE WA 03195

DR TOM G4«VEY
AÄPA/ISG
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR JOHN N. ENTZMTNGEP, J?.
ARPA/OIRO
37D1 NIKTH FAIRFAX OPIVE
aP.LINÜTGN VA 22203-1714

LT COL ANTHONY WAISÄNEM, PHO
C 3 V i") A N 0 ANALYSIS GSJUP
Hi AI« W3SILITY CQMMANO
402 SCOTT DRIVE, UNIT 3L3
SCOTT 5F3 IL 62225-5307

0 L -1 0

DIRECT??
ARDA/ISü
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA £2203-171'+

0FcICE OF THE CHIEF OF NÄVAL 3SCH
ATTN: «P

?AUL QUINN
C03E 311
S00 M. QUIMCY STREET
ARLINGTON VÄ 22217

DR GEORGE FERGUSON
UNrVüRSITr OF ROCHESTEP
COMPUTER STUDIES 3L0G, RM 732
WILSON 3LV0
ROCHESTER MY 14627

QR STEVE HANKS
0£RT Qf COMPUTER SCIENCE £. ENG»G
UNIVERSITY OF WASHINGTON
SEATTLE WA 98195

OR WILLIAM S. '"ARK
LOCKHEED PALO ALTO RSCH LA»
OEPT 9620, ÖLDG 254F
3 251 HANOVER ST
PALO ALTO CÄ 94304-1137

OR ADNAN OASWICHE
INFORMATION & DECISION SCIENCES
ROCKWELL INT«L SCIENCE CENTER
1049 CAHXNO DOS RIOS
THOUSAND OAKS CA 91360

QR JAMES CRAWFORD
CIRL, 1269
UNIVERSITY OF OREGON
EUGENE OR 97403

ROBERT J. KRUCHTEN
HQ AHC/SCA
203 W LOSEY ST, SUITE 1016
SCOTT AF3 IL 62225-5223

«U.S. GOVERNMENT PRINTING OFFICE: 1997-509-127-61019

OL-11

MISSION
OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

